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1. Introduction

This final technical report covers a three and one-half year period preceding February 28,

1993 during which support was provided under NASA Grant NAG-l-1065. Following a gen-

eral description of the system identification problem and a brief survey of methods to attack

it, the basic ideas behind the approach taken in this research effort are presented. The results

obtained are described with reference to the published work (references [1-23] in Section 5),

including the five semiannual progress reports previously submitted ([2,6,10,12,16]) and two

interim technical reports ([7,17]).

2. List of Scientific Collaborators

Y. A. Fiagbedzi
A. V. Fullerton*

J. Q. Pan
A. A. Pandiscio

A. E. Pearson*

Y. Shen*

Assoc. Prof. of Math. Sci., King Fahd Univ.
Grad. Student Research Ass't. 1989-91

Grad. Student Research Ass't. 1989-92

Raytheon Grad. Student Fellow 1990-93

Professor and Principal Investigator
Grad. Student Research Ass't. 1991-93

* Received partial support under NAG-l-1065.

3. The System Identification Problem

The identification problem for a system with an input u and an output y is easy to state

in generic terms: Given a class of systems with parametrized members So such that an

input/output pair (u ,y ) is modeled in the equation-error format So(u ,y )=0, find 0 such that a

suitably chosen norm measure of distance, IIS_(u ,Y)II, is "small" in some sense relative to all

available i/o pairs (u,y). The models considered in this research are those that can be

described by input/output ordinary differential equations. In the general nonlinear system

case, the parametrized members axe represented implicitly by differential operator equations of
the form:

_1 /12

S0: _, _,gj(O)Fjk(u,y)P#(p)Ek(u,y)= 0, go = 1 (1)
j=o t=l

where the gj (0) are specified functions of the parameters 0, the Pit (19) are specified polyno-

mials of degree n in the differential operator p=d/dt, and the (Ek(u,y),Fjk(u,y)) are
specified functions of the i/o pair (u,y). Here the problem is to obtain an estimate of the

parameters 0 given sampled versions of the i/o data [u(t),y(t)] over some time interval

0<t_<T. Since parametrized state vector equations of the normal form:

.r = f (x ,u ,0), y = h (x ,u ,0) (2)

constitute the most common starting point for methods aimed at the parameter identification of

nonlinear differential systems, the first step in our approach is to obtain (assuming this is pos-

sible) an equivalent i/o model like (1) when starting from a model of form (2). Methods for

attacking the parameter identification of the model (2) include: quasilinearization, nonlinear

filtering or smoothing, extended Kalman filtering, and state variable filters. The results of our

efforts pertaining to the model (1) will be summarized in Section 4.8.
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The more specializedbut neverthelessomnipresentlinear system counterparts to (1) and

(2) are, respectively: the i/o differential operator models of the form 1

L0: O(p)y(t) =N(p)u(t) (3)

in which 0 is comprised of the coefficients entering into the definitions of the polynomial

matrix pair (D (p),N (p)), and the linear state vector equation model

.fc(t) = Ax(t) + Bu(t), y(t) = Cx(t). (4)

In contrast to (1) and (2), the relations between (3) and (4) are well known, although the

multi-input/multi-output case entails cumbersome details. Thus, if G (s) denotes the transfer

function matrix:

G (s) = D-l(s )N (s) = C (sI-A)-lB. (5)

System identification for the class L 0 will also focus on determining the frequency transfer

function G (i co) given an i/o pair under transient conditions (Section 4.9).

Notwithstanding the problem of estimating the parameter vector 0, there is also the prob-
lem of order or structure determination for whatever class of models is under consideration.

Effort in this regard has been confined to the linear class L 0. In addition to the system

identification approaches mentioned above for the general nonlinear model (2), the methods

applicable to the models (3) and (4) include: approximation techniques like the 8 operator,

block pulse and orthogonal function expansion methods; the various moment functional tech-

niques; and the conversion of an identified discrete-time model (obtained by a variety of

methods) into a continuous-time model using, for example, the bilinear transformation. 2

4. Research Results Under NAG-I-1065

The system identification research carried out under this grant has utilized the method of

moment functionals which employs integration-by-parts to transfer derivatives on data vari-

ables to smooth user-chosen functions in order to obtain an algebraic equation useful for

identification purposes. The particular method examined is originally due to Shinbrot 3 in

which the user-chosen "modulating" functions possess the property that the resulting moment

functionals are devoid of unknown initial/boundary conditions on the data, i.e., no state or ini-

tial condition estimation is involved for transient time-limited data. As introduced by Shin-

brot, _(t) is a modulating function of order n on a fixed time interval 0<__t_<T if it is

sufficiently smooth and satisfies the 2n end point conditions:

I Here we allow for multi-input/multi-output systems.

2 Sources for discussion of these methods can be found in the recent books: System Modeling and

Identification, by R. Johansson, Prentice Hall, 1993. Identification of Continuous-Time Systems, N. K.
Sinha and G. P. Rao, eds., Kluwer Acad. Pub. 1991. Identification of Continuous Systems, by H. Un-

behauen and G. P. Rao, North-Holland, 1987.

3 Shinbrot, M., "On the analysis of linear and nonlinear systems." Trans. of the ASME, 79, pp.

547-552, 1957. Also, NACA Rep. No. TN 3288, "On the analysis of linear and nonlinear systems

from transient response data" by M. Shinbrot, 1954.
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pkt_(t)=O att =0andt =T, k =0,1 .'n-1 (6)

where p denotes the differential operator, i.e., p---d/dt,p2---d2/dt 2, etc. Moreover, t)m(t),

m =1,2 • • M, is a sequence of order n modulating functions if (6) is satisfied for each m.

Although Shinbrot's method and its unique property of avoiding state estimation has

been known for a long time, it has remained relatively obscure due largely to a lack of clear

guidance as to a good choice of modulating functions. In addition, the method may lack

appeal on the basis of it being "off-line". As we reviewed in 1985, 4 the 'cons' have

apparently outweighed the 'pros' since very few papers have appeared on the method subse-

quent to Shinbrot's original work: What is needed is a sequence of modulating functions with

highly composite members that ease the computational burden in calculating the underlying
"moment functionals". The trigonometric Fourier modulating functions introduced in Pear-

son and Lee (Footnote 4) satisfied this need because the required functionals are Fourier series

coefficients of the i/o data which can be calculated efficiently by DFT/FFT techniques. How-

ever, they were not presented in an explicit form, i.e., an a priori finite set of such modulating

functions could be calculated by inverting a Vandermonde matrix depending on the order n

and the number M of functions desired, but increasing n and/or M required a new inversion. 6

This implicit stigma was removed by a discovery (see Eqn. (7) below) made during the early

portion of the research carded out under NAG-l-1065. The explicit Fourier modulating func-
tions facilitated several extensions of the theory and helped pave the way to more sophisti-

cated methods for handling noise corrupted data.

4.1. The Explicitly Defined Fourier Modulating Functions

Consider the modulating function of order n defined by 7

le-imt°°t(e-it°°t-1)n, 0<__t_<T = 2r_/_ 0 (7a) m(t)

=l_(-1)n-Y_le-i(m+J)_ (7b)
-j---0

where i=_-T, ¢%=2_/T plays the role of a 'resolving' frequency, and m is any integer which

shall be referred to as the 'modulating frequency index'. The fact that _m(t) is a modulating

function of order n for each m is evident from the basic definition (6) applied to (Ta). Thus,

4 A. E. Pearson and F. C. Lee, "Parameter identification of linear differential systems via Fourier

based modulating functions," Control-Theory and Adv. Tech., 1, pp. 239-266, 1985.

5 This remains true today. In fact, the recent book edited by Sinha and Rao (see Footnote 2),

although a good source for a variety of topics dealing with differential system identification, contains
no reference to Shinbrot's method.

6 In the paper: "System identification using modulating functions and fast Fourier transforms," by
T. B. Co and B. E. Ydstie, Computer Chem. Engr., 14, pp. 1051-1056, 1990, independent verification

has been given in the use of the real Fourier modulating functions by application to a variety of ODE

models, as well as showing how the method can be used in model reduction.

7 Equation (7b) follows from (7a) upon utilizing the binomial expansion.
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the _rn in (7), m=0,1, • • M, represent an explicitly defined linearly independent set of order

n modulating functions with the important property that moment functionals involve Fourier

series coefficients on [0,T].

Two modulation properties can be developed that ease the various least squares formula-
n

tions. The first concerns a linear differential operator P (p), i.e., a polynomial like _akp n-k ,
k=0

and a function v(t) on [0,T] with Fourier series coefficients V(m) defined by

T

,!vV (m ) = .-_ (t )e-im_ dt. (8)

Property 1. For a sufficiently smooth function v(t) defined on [0,T] and a differential opera-

tor P (p) of order n, the integration of _m (t)P (p)v (t) over [0,r I satisfies

T

_m (t )P (p )v (t )dt = An P (im Coo)V (m ) (9)

where A" is the n th order finite difference operator, i.e., with Q (m)=P (fin coo)V(m ),

AQ(m) = O (re+l) - O(m)

A2Q(m) = Q(m+2) - 2Q (re+l) + Q(m)

ii

AnQ(m) = _(-1) Q(n+m-k). (10)
k=0

Proof. Taking into account (6) and using integration-by-parts on the left side of (9), all boun-

dary point evaluations are zeroed while transferring the derivatives on v (t) to derivatives on

the modulating function _m (t) such that:

T T

fCPm(t )P (p )v (t )dt = Iv (t )P (-p )_Prn(t )dt.
0 0

In view of the representation (7b), coupled with the fact that P (-p)e -_ =P (_.)e -xt , the right

sides of (9) and (10) are obtained which proves the property.

The implication of (9) is that derivatives of signals in the continuous time domain can be

traded exactly for finite differences of modulated Fourier series coefficients in the discrete fre-

quency domain by forming moment functionals using the Fourier modulating functions. The

presence of such Fourier series coefficients should not be interpreted as implying a kind of

Fourier series approximation in the identification problem. Rather, Property 1 facilitates an

equivalent statement of the system identification problem entirely in the frequency domain

while utilizing transient i/o data. In applications, the range of values to be chosen for m and

the choice of the time interval [0,T], equivalently the resolving frequency co0, will depend on

the bandwidth of the signals involved, as well as the complexity of the model relating the sig-

nals. It is noted that AnX can be calculated by the M-file 'diff(X,n)' in MATLAB, which

facilitates ease of coding in that environment, and the Fourier series coefficients of the signals

required in the identification problem can be calculated efficiently and accurately via
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DFT/FFr techniques.Furtherelaborationon this point follows below in Section4.3.

4.2. Least SquaresIdentification for L0: SISO Case

Let an i/o datapair [u (t),y (t)] for a single-input/single-outputlinear systemof order n

be modeled on [0,T] by

a rl

pay(t) + __,ajpn-jy(t) = __,bjpn-Ju(t) + e(t) (11)
j=l 1=1

where the (aj,bj),j=l,2". n, are parameters and e(t) represents the effect of modeling

errors. Modulating (11) with ¢_m(t), integrating over [0,T] and applying Property 1:

n a

Aa(imc%)aY(m) + EajAn(imoo)a-JY(m) = _,bjAn(imCOo)"-JU(m) + e(m) (12)
j=1 j=1

where the residuals in (12) are defined by
T

8(m ) = ie (t )c_m(t )dt.
0

Defining a column vector 0=col[-a 1, " " -an,b 1, " " b,,],

leads to the standard (albeit complex-valued) linear regression:

T_(m) =_(m)0+E(m), m =0, 1,.-M

where the row vector of regressors _m ) is defined by

_m ) = row( T{(m ), • • TnY(m),T{'(m ), • • TU(m ) )

and the pairs (TjU(m),T](m)), j--O,1 -- n, are defined by

(13)

a rearrangement of terms in (12)

(14)

(15)

(16)

Taking into account the fact that (14) is complex-valued, a cost function for least squares

minimization can be defined by

J (0) = (L -re 0)'(Yc -F c 0) (17)

where prime denotes transpose and the following notation applies:

Re 7J(0) "Re 7(0)"

L

ReT_(M)

Im 7_(0)

ImT_(M)

)

Rey(M)

' Fc = ImT(O)

.ImT(M).

(18)

with the complex _m) and T_(m) defined in (15) and (16).

Assuming linearly independent regressors, the one-shot estimate which minimizes (17) is

given by
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= (r'cTc)-lFc'Yc . (19)

Noting from (10) that M in (18) actually corresponds to the frequency (M+n)¢o o suggests that

in choosing the pair (M,_0), their product should correspond roughly to the system

bandwidth. Also, M has to be sufficiently large to provide enough algebraic equations upon

which to base a one-shot estimate. Hence, if # denotes the number of unknowns (# = 2n for

the model (11)), then the pair (M,c00) can be uniquely determined by the guidelines:

M = 2#- 4#

and (M +n )¢oo = a)B

where o_B is the system bandwidth, i.e., the highest useful frequency in the i/o data.

(20)

4.3. Computational and Sampled.Data Considerations

Assuming uniform sampling of the i/o data on [0,T], the integral (8) for all required

Fourier series coefficients will be approximated by standard quadrature formulae which, in

turn, are caiculated by a DFT/PTT algorithm. Thus, if the sampling interval St and the total

number of samples N satisfy St=T/N and N>M+n, the staircase, trapezoidal and parabolic

rules applied to (8) lead respectively to

T

l !v (t )e-im°_ dt

where

1

+ 0 (N) (21a)

- +,v(t)e 'm°°tdt =_ 02VN + k_=iv, W +0

= [vo v ]v(t)e_imOotd t "_ + _1 2vkWmk + _1 vkWr,_ +O( ) (21C)
k=l,3 • • k=2,4 • •

m =0, 1,--M+n, vk =v(kT/N) and W =e -i2raN.

The quantities within brackets on the right hand sides of the above can be evaluated by a

standard DFT/FFT algorithm provided the range of values for the modulating frequency index

m is artificially extended to [0, N-l]. A fundamental property of the DFT is that the first

and last halves of the transformed sequence are complex conjugates of one another. Hence, in

order to preserve uniqueness for the first M+n harmonics, it follows that N has to satisfy

N/2 > M + n. (22)

In practical experience using either simulated or physical data, very little difference is

noticed between the three approximations in (21) provided: (i) the data is oversampled in

terms of the Nyquist sampling theorem, and (ii) the guideline (20) is upheld. 8 These provisos

8 The first proviso is more essential than the second if the "adaptive" weighted least squares

(AWLS) algorithm is utilized (Section 4.4), i.e., the AWLS algorithm tends to make the parameter esti-
mates insensitive to a mismatch in bandwidth.
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also bear a relation to the DFT requirement(22) ascan be shownby the following. Let F B

and F s denote the bandwidth and sampling frequency respectively (in Hertz), then 'oversam-

piing' implies the inequality:

C0B 1 N Ne°0
2F B < < F s =_ _<<--=--=_

/c St T 2r_

Assuming adherence of the bandwidth guideline (20), the above implies

(M +n )O3o N COo M + n
<<_ _ << 1. (23)

rr 2re N /2

Hence, the DFT requirement (22) is amply upheld by oversampling and adherence to the

bandwidth guideline in (20); moreover, (23) implies that only the lowest few percent of the

available DFT harmonics are utilized in the least squares identification.

The following example from [22] illustrates some aspects of the sampling rate considera-

tion and, at the same time, provides a comparison with a commercially available algorithm for

parameter identification. Consider the system

_'(t) + 3_(t) + By(t) = 5u(t), O<t<T = 10s (24)

which possesses the transfer function: H(s)= 5/(sZ+3s+8) Shown in Fig 1 for point of

reference is: (a) the time domain step response of the system, (b) the frequency domain mag-

nitude plot, and (c) the effect of sampling rate on the parameter estimation errors under ideal

zero-noise conditions. The latter is discussed below. Since there are only 3 unknown param-

eters and n--2, M was chosen as M=6. This means that (M +n )o)0--0.8 Hz is the highest fre-

quency that will be extracted from the i/o data, which is roughly the bandwidth of the system

as seen in Fig. 1 (b).

0.8 , I ! ! 0.8

............................. 0.4

...................... 0.2

i :
: i

0.0 i i i i 0.0
0 2 4 6 8 10

TIME (s)

(a)STEP RESPONSE

0.6

0.4

0.2

C.6F

, _ 50

' =

Ir_(f)i 4o .....

.30 ............

0 I 2 3 4 8 16 24 32 40 48

FREQUENCY (Hz) SAMPLING FREQ (Hz)

(b)MAGNITUDE PLOT (c)NORMALIZED ERROR(Z)

lr_ 1. Aspecm oftl_mula_ _U_m
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The output y(t) was corrupted by additive white Gaussian measurement noise. Two

hundred Monte Carlo runs were made for each of several noise-to-signal ratios (NSR) under

two separate conditions: (i) the initial conditions fixed at (0,0), and (ii) the initial conditions

randomized for each run, i.e., a total of 400 Monte Carlo runs at each NSR. The input was

u(t)=sint2/5 over the T=10s time interval for each run. All calculations were carried out in

MATLAB. The sampling rate was fixed at 25.6 Hz, thus facilitating a standard 256 point

DFT for the 10s time interval, and the staircase rule (21a) was used in approximating (8) to

obtain the i/o Fourier series coefficient pairs [U (m ),Y (m )], m=O,1 • • M+n. Since N=256 is

much larger than M+n =8, it is noted from (23) that only 8/128 = 6% of the total harmonics

available from the i/o DFT's is actually retained in implementing the algorithm. This

accounts for the high accuracy achieved in implementing the method with modest sampling

rates inasmuch as calculating the higher frequency coefficients would be expected to entail

greater numerical error in the presence of high frequency noise. This is further discussed
below.

15 , , , , , , 15

FIXED Xo= (0,0)' ,

o PEM10

5

0

0

25

2O

15

10

I I I I I .-J..-

i0 20 30 40 50 60

PEM

• LS/MFT

RANDOMIZED Xo

o lo 20 3o 40 5o 60

(a) NORMALIZED BIAS (%)
VERSES NSR (%)

I0

0 1
o

5o

4O

3o

2o

I0

I t I I I I

FIXED Xo= (0.0)' tr_

o /////6

o

I I I I k_.J

10 20 30 40 50 60

I I I I I I

RANDOMIZED Xo

I I I-
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(b) NORMALIZED STD (%)

VERSES NSR (%)

Fig. 2. __t noise fffeets
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The results are shown in Fig. 2 where "MFT" means the estimate is based on the modu-

lating function technique. Also shown is the estimate based on the prediction error method

(PEM) from the Identification Toolbox in MATLAB. 9 In the case of nonrandom (fixed) initial

conditions shown in the top halves of Fig. 2, the PEM shows a fairly constant 6=7% normal-

ized bias error 10 as the NSR increases from 0% to 60%, whereas the bias for the MFT gradu-

ally increases from 0% to =12% over the same range of NSR values. Meanwhile, the normal-

ized standard deviations are nearly the same for this case. However, in the case of random-

ized initial conditions, see the lower halves of Fig. 2, both the bias and the standard deviation

for the PEM show a several-fold increase and, moreover, each exhibits rather unpredictable

behavior that is difficult to reproduce even with additional Monte Carlo runs. By contrast, the

bias and standard deviation have both decreased at each NSR for the MFT, indicating that

nonzero initial conditions favor the MFT.

The above comparative results have been verified on other examples as well (see Fuller-

ton [11]). One reason for this is that the MFT does not have to estimate unknown initial con-

ditions; another is related to the fact that the MFT is a direct identification technique for

continuous-time models, while the PEM first estimates the parameters of a discrete-time

model then converts this to a continuous-time model. Also, the Fourier series coefficients

needed by the MFT can be computed accurately with modest sampling rates using the DFT.

Additional insight in this regard is gained by referring to Fig. l(c) which shows the influence

of sampling rate on the percent normalized error under zero measurement noise conditions.

Apparently the PEM needs a much higher sampling rate for the given 10s of data, or a much

longer T time interval for the given 25.6 Hz sampling rate, in order to achieve a small estima-

tion error. The influence of sampling rate on the estimation error for the MFT is much more

consistent with the Nyquist sampling theorem in view of the frequency magnitude plot in Fig.

l(b). Finally, it is interesting to note that the MFT requires substantially less computer time

for each set of Monte Carlo runs (about a ten to five fold decrease depending on whether or

not the PEM has to estimate the initial conditions).

4.4. The LS, WLS and AWLS Algorithms

If the equation error function e (t) in the linear system model (11) is modeled as station-

ary Gaussian "white" noise with zero mean and covariance Ee (t )e (t +x)=oS(x), then the

modulated residual process e(m) defined in (13) is also Gaussian with a covariance matrix

given by Equation (8) in [16], or (2.25) in [20]. Even though the residuals in the

identification problem will not be white, this fact facilitates a reasonable weighting matrix in

the discrete frequency domain for a weighted least squares estimate which attempts to
ameliorate the effects of noise when the measurement noises on the i/o data are white. More-

over, it points the way to formulating an "adaptive" weighted least squares algorithm in the

9 Ljung, L. (1987). System Identification Toolbox, Version 2.11. The MathWorks, Inc.

1 # 0.--0.* ^ .

1o Defined as _ J_ • 100% where 0j is the ensemble average of the MFT esti-

mates for the true 0j *.
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discrete frequency domain which emulatesan approximatemaximum likelihood estimate.
Theseare the basic ideasdevelopedin Chapter2 of Shen'sPh.D. thesis [20]. The advantage
of thesedevelopmentsis illustratedby a simulationstudy carriedout for the system(24) and
summarizedin Section2.4 of [20]. In addition to thesampledi/o dataon [0,T], implementa-
tion of the AWLS algorithm requires an assumption of the system order n and an initial guess

for the weighting matrix W which is normally taken as the covariance matrix under the ideal

white noise residual case. Convergence is fast and has never failed in numerous trials. The

software for these algorithms will be supplied under separate cover in a toolbox to be

prepared by Y. Shen and the PI. An earlier toolbox based on the real Fourier modulating

functions was prepared by Fullerton [8].

4.5. Model Reduction

Motivated in part by the requirements attending one of the two methods developed in

this research to handle MIMO models, the AWLS algorithm was applied to the model reduc-

tion problem, thus giving a frequency domain approach to this problem that has several

advantages: (i) the high order model to be simplified can be supplied in either the time

domain via a differential equation, or in the frequency domain via Bode type plots, (ii)

weighting the cost function in the frequency domain is a straightforward and direct option for

the AWLS formulation, and (iii) the resulting lower order model obtained via the AWLS for-

mulation is at least as good and usually better than the same order model obtained by all

methods with which the algorithm has been compared. Most notably, this is true for the

well-known Balanced Reduction method, which is available in MATLAB. The detailed dis-

cussion and verification of this is given in Chapter 3 of Shen's thesis [20].

4.6. Extensions for Le: MIMO Systems

Two viewpoints in modeling multi-input/multi-output systems led to two different formu-

lations to extend the LS, WLS and AWLS algorithms for the class L 0 in (3). If the underly-

ing model is selected to be a state space model as in (4), then an appropriate scalar-valued i/o

differential operator model, which is required in this approach, is the following:

n%

P (p)yj (t) = __, Qjk (P)ut (t), O<t <T (25)
k=l

j = 1,2"'my

where the scalar-valued polynomial P (s) is defined by P (s)---det(sI-A ) in relation to the sys-

tem matrix A in (4). A joint cost function that reflects the equation errors for each equation

in (25) can be specified and minimized using the AWLS algorithm. A weighting between

each such equation error has to be supplied, or determined by testing different weightings,

which essentially accounts for differences in the output measurement noise variances for the

my outputs. This is the viewpoint taken in Chapter 5 of Shen's thesis [20] (also summarized

in [16]) which was used to model the physical data supplied under NAG-l-1065 for an F-18
aircraft.

Another viewpoint in modeling MIMO systems of the class L 0 is to find the best linear

transfer function model that relates the i/o data without constraining the polynomials on the

left hand side of (25) to be the same for each j. That is, each output y/ could be modeled
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by:

P j (p )y) (t ) = Z Qjk (la )uk (t ), O<t <T (26)
k=l

which differs from (25) in that the poles of the estimated MISO models are not constrained to

be the same. This leads to a simpler extension of the AWLS algorithm developed for the

SISO case, but necessitates a model reduction for each resulting MISO model in (26) in order

to ferret out the common poles and zeros. This viewpoint is developed in Chapter 4 of

Shen's thesis [20] and motivated the model reduction results mentioned in Section 4.2 above.

4.7. Applications to an F-18 Aircraft

Using physical data for an F-18 aircraft supplied under NAG-l-1065, the AWLS algo-

rithm was applied to obtain i/o models for both the lateral and longitudinal dynamics

[16,17,20]. The following output signal-to-error ratio (in decibels) was used as a measure of

goodness-of-fit in each channel:

RMS0') e(t) =y(t) -)3(t), O<_t<_T
S/E = 20 log10 RMS(e) '

where R_MS(y) means the root-mean-square value of the output signal y(t) over the [0,T]

time interval, and )_(t) is the estimated output using the model. Since our algorithm does not

estimate initial conditions, we used a standard Luenberger observer running backwards in time

(see details in Appendix C of Shen [20]) in order to estimate an initial condition and, subse-

quently, simulate the model with the given input data to obtain e (t) for the above S/E. Typi-
cal S/E ratios were on the order of 8 - 12 db for the longitudinal dynamics, depending on

whether a second or third order model is used, and 9 - 12 db for the lateral dynamics. (See

Figs. 5.5 and 5.12 in Shen [20] for the time domain performance of the resulting models.) In

order to compare with a simulated model under specified measurement noise conditions, the

same algorithm was applied to a theoretical linear model supplied to us under NAG-l-1065

using the given forcing function data for the physical modeling. These models gave S/E
ratios on the order of 34 - 41 db for the longitudinal dynamics and 16 - 30 db for the lateral

dynamic channels (see Figs. 5.8 and 5.14 in [20] for the time domain performance of these

models). Even at 16 db the fit is very good, and at S/E ratios above 30 db there is hardly any

discernible error in the model responses compared with the theoretical outputs.

4.8. Extensions to LTV and Nonlinear System Models

If the time variations in the coefficients of a linear time-varying differential equation

model can be parametrized as linear combinations of known modal (smooth) functions on

[0,T], then the least squares formulation developed in Section 4.2 can be extended to yield

modulated equation errors in the discrete frequency domain with Fourier series coefficients

computed for time-modulated i/o data, i.e., the i/o data modulated by the modal functions on

[0,T]. This is carded out in [22] and is illustrated by simulations for a second order system

with a parabolically varying damping coefficient. The good noise rejection properties experi-

enced with the algorithm for time-invariant systems appear to carry over to the time-varying

case as well.
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If the form of the nonlinearitiesareknown up to parametricrepresentationand if the i/o
model can be manipulatedinto the generic form (1), then it is possibleto extend the least
squaresparameteridentification in the discretefrequencydomain. This is carried out in a
seriesof publicationsin [1,18,19]. Although mainly of theoreticalinterestthusfar, thepoten-
tial exists to apply thesealgorithmsto unsteadyaerodynamicmodelsakin to thosestudiedin
Chin and Lan. 11

4.9. Nonparametrie Identification: Frequency Analysis

Methods for determining the frequency transfer function of a stable linear system from

i/o data include correlation and spectral analyses, as well as the direct ratio of Fourier

transforms and steady state sinusoidal measurements. Each of these "nonparametric"

identification techniques require either a statistical stationarity assumption on the data, or a

periodic steady state condition to be established, before initiating calculations of the transfer

function at pertinent frequencies. Notwithstanding noise considerations, long data lengths may

be required in order to achieve good accuracy due to the stationarity or steady state assump-

tion, or to eliminate end point effects in case a direct ratio of Fourier transforms is used on

time-limited data. By contrast, a method was proposed in [13,14] that utilizes the modulating

functions (7) to extract the frequency content in short data lengths in order to set up a least

squares estimation of the transfer function at selected frequencies. Since short data lengths

are used there is no assumption of steady state operation or stationarity of the data, though

there must be present sufficient energy content in the data at the specified frequencies in order

to avoid degeneracy in the least squares estimate. The method was also extended to mul-

tivariable systems, and was illustrated by way of simulation for a two-input/two-output exam-

ple in [22].

4.10. Miscellaneous Notes

In addition to the results summarized above, research under NAG-l-1065 has included

the following topics.

Order Determination for L o The problem of determining the orders of the various polynomi-

als that enter into specifying a member of the linear class L 0 has been studied in [9,14,20].

Basically, the approach taken is to examine the residuals e(m) in the discrete frequency

domain for various presumed orders starting from a lowest order. Since there are no initial

conditions to be estimated in the modulating function approach, the norm of the residuals in

the frequency domain is unbiased by unknown initial/boundary conditions and provides a use-

ful measure for order determinaion. However, more could probably be done on this important

problem and, hence, this remains a topic for future investigation.

Collinearity The problem of collinearity in the regressors brought about by linear feedback

was studied in [11]. The result is that predicting the deleterious effects of noise and collinear-

ity remains a difficult problem in system identification, but the degree of collinearity that can

11 Chin, S. and C. E. Lan (1991). Fourier Functional Analysis for Unsteady Aerodynamic Model-

ing. AIAA-91-2867-CP.
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be toleratedin the modulatingfunction approachis quite high, e.g., about 95% degreecol-
linearity (asdefinedin [11]) while maintainingabout5% accuracyin theestimatedparameters
andin the presenceof about5% noiseon the data.

I/0 Modeling to Alleviate Noisy Measurements A study was undertaken in [7] to derive an

i/o model not involving a noisy velocity signal with the expectation that the accuracy in the

parameter estimates might be enhanced if the signal in question was particularly noisy. The

state equation model with appropriate noise levels was communicated to us from E. A.

Morelli. t2 The expectation was realized for those parameters that could be estimated from the

i/o model, i.e., not all the state equation parameters could be estimated uniquely from the i/o

model due to an inherent lack of identifiability for certain state equation parameters in the

input/output model.

Frequency Estimation in a Signal Processing Problem The classic problem of estimating the

frequencies in a sum of sinusoids buried in noise can be formulated as a system identification

problem of the class L 0 using the fact that the sinusoids satisfy a homogeneous linear

differential equation. The modulating function approach was used to study this problem with

the expectation that the avoidance of initial condition estimation could enhance the accuracy
in the estimates. The results of the study are contained in [14,15] and basically confirm this

expectation in relation to the high order Yule-Walker approach.

Time Lag Systems Although not funded by NAG-l-1065, research results have been obtained

on an approach to the feedback control of time lag systems that employs a "reducing transfor-

mation" [3-5,21]. The main advantage of this approach is that it facilitates the design of

feedback controllers for systems described by differential-delay equations based on well-

known finite dimensional control techniques. Our recent studies in [21] extend robust control

techniques, specifically the structured singular value, to this class of control systems within

the context of the reducing transformation method.
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